Author
Listed:
- Zhen-Yu Chen
(School of Business Administration, Northeastern University, Shenyang 110169, China)
- Minghe Sun
(Carlos Alvarez College of Business, The University of Texas at San Antonio, San Antonio, Texas 78249)
Abstract
The data-driven, multi-item, one-warehouse, multiretailer (OWMR) problem is examined by leveraging historical data and using machine learning methods to improve the ordering decisions in a two-echelon supply chain. A deep stacking kernel machine (DSKM) and its adaptive reweighting extension (ARW-DSKM), fusing deep learning and support vector machines, are developed for the data-driven, multi-item OWMR problems with backlog and lost sales. Considering the temporal network structure and the constraints connecting the subproblems for each item and each retailer, a Lagrange relaxation–based, trilevel, optimization algorithm and a greedy heuristic with good theoretical properties are developed to train the proposed DSKM and ARW-DSKM at acceptable computational costs. Empirical studies are conducted on two retail data sets, and the performances of the proposed methods and some benchmark methods are compared. The DSKM and the ARW-DSKM obtained the best results among the proposed and benchmark methods for the applications of ordering decisions with and without censored demands and with and without new items. Moreover, the implications in selecting suitable, that is, prediction-then-optimization and joint-prediction-and-optimization, frameworks, models/algorithms, and features are investigated.
Suggested Citation
Zhen-Yu Chen & Minghe Sun, 2025.
"Deep Stacking Kernel Machines for the Data-Driven Multi-Item, One-Warehouse, Multiretailer Problems with Backlog and Lost Sales,"
INFORMS Journal on Computing, INFORMS, vol. 37(4), pages 894-916, July.
Handle:
RePEc:inm:orijoc:v:37:y:2025:i:4:p:894-916
DOI: 10.1287/ijoc.2022.0365
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:37:y:2025:i:4:p:894-916. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.