IDEAS home Printed from https://ideas.repec.org/a/igg/rmj000/v37y2024i1p1-27.html
   My bibliography  Save this article

A Comment Aspect-Level User Preference Transfer Model for Cross-Domain Recommendations

Author

Listed:
  • Wumei Zhang

    (Zhejiang Tongji Vocational College of Science and Technology, China)

  • Jianping Zhang

    (Zhejiang Tongji Vocational College of Science and Technology, China)

  • Yongzhen Zhang

    (Zhejiang Tongji Vocational College of Science and Technology, China)

Abstract

Traditional cross-domain recommendation models make it difficult to deeply mine users' aspect-level preferences from comment information due to existing problems such as polysemy of comment text, sparse comment data, and user cold start. A Cross-Domain Recommender (CDR) model that integrates comment knowledge enhancement and aspect-level user preference transfer (C-KE-AUT) was proposed to address the above issues. Firstly, an aspect-level user preference extraction model was constructed by combining the RoBERTa word embedding model, high-level feature representation based on Transformer, and aspect-level attention-learning methods. Then, a user aspect-level preference cross-domain transfer model was constructed based on a two-stage generative adversarial network that can transfer the aspect-level interest preferences of users in the source domain to the target domain with sparse data. The experimental results on the Amazon 2018 comment dataset indicated that the recommendation performance of the proposed C-KE-AUT model was significantly superior to other advanced comparative models.

Suggested Citation

  • Wumei Zhang & Jianping Zhang & Yongzhen Zhang, 2024. "A Comment Aspect-Level User Preference Transfer Model for Cross-Domain Recommendations," Information Resources Management Journal (IRMJ), IGI Global, vol. 37(1), pages 1-27, January.
  • Handle: RePEc:igg:rmj000:v:37:y:2024:i:1:p:1-27
    as

    Download full text from publisher

    File URL: https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IRMJ.345360
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:rmj000:v:37:y:2024:i:1:p:1-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.