IDEAS home Printed from https://ideas.repec.org/a/igg/jkbo00/v3y2013i4p1-21.html
   My bibliography  Save this article

Optimizing Sample Design for Approximate Query Processing

Author

Listed:
  • Philipp Rösch

    (Business Intelligence Practice, SAP Research, Dresden, Germany)

  • Wolfgang Lehner

    (Database Technology Research Group, Dresden University of Technology, Dresden, Germany)

Abstract

The rapid increase of data volumes makes sampling a crucial component of modern data management systems. Although there is a large body of work on database sampling, the problem of automatically determine the optimal sample for a given query remained (almost) unaddressed. To tackle this problem the authors propose a sample advisor based on a novel cost model. Primarily designed for advising samples of a few queries specified by an expert, the authors additionally propose two extensions of the sample advisor. The first extension enhances the applicability by utilizing recorded workload information and taking memory bounds into account. The second extension increases the effectiveness by merging samples in case of overlapping pieces of sample advice. For both extensions, the authors present exact and heuristic solutions. Within their evaluation, the authors analyze the properties of the cost model and demonstrate the effectiveness and the efficiency of the heuristic solutions with a variety of experiments.

Suggested Citation

  • Philipp Rösch & Wolfgang Lehner, 2013. "Optimizing Sample Design for Approximate Query Processing," International Journal of Knowledge-Based Organizations (IJKBO), IGI Global, vol. 3(4), pages 1-21, October.
  • Handle: RePEc:igg:jkbo00:v:3:y:2013:i:4:p:1-21
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/ijkbo.2013100101
    Download Restriction: no

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jkbo00:v:3:y:2013:i:4:p:1-21. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Journal Editor). General contact details of provider: https://www.igi-global.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.