IDEAS home Printed from https://ideas.repec.org/a/igg/jitn00/v9y2017i1p1-13.html
   My bibliography  Save this article

Throughput Analysis of IEEE 802.11ac and IEEE 802.11n in a Residential Home Environment

Author

Listed:
  • Zawar Shah

    (Whitireia Community Polytechnic, Auckland, New Zealand)

  • Ashutosh Kolhe

    (Whitireia Community Polytechnic, Auckland, New Zealand)

Abstract

IEEE 802.11ac is the latest WiFi standard that operates in 5GHz frequency band and promises high data rate than IEEE 802.11n. In this paper, the authors carry out experiments using commercial off-the-shelf equipment in a typical home environment and quantify the gain provided by IEEE 802.11ac compared to IEEE 802.11n. Their experimental results obtained in a typical home environment show that in 5GHz frequency band with a 2x2 MIMO configuration, IEEE 802.11ac provides much higher throughput than IEEE 802.11n. IEEE 802.11ac provides an average throughput gain of 94% and 91% at a distance of 3.6m and 8.5m from the wireless router, respectively. The authors further investigate the gain in average throughput that is provided by IEEE 802.11ac when the transmit antenna diversity on the wireless router is increased from two to three. They note that IEEE 802.11ac with a 3x2 MIMO configuration helps to combat multipath fading effect present in residential home environment and provides higher average throughput than 2x2 MIMO e.g. at a distance of 11m from the wireless router, 3x2 MIMO configuration provides a gain of 15.13% than the 2x2 MIMO configuration. The authors conclude based on their results (obtained via experiments in a typical home environment) that although IEEE 802.11ac wireless routers are more expensive than IEEE 802.11n wireless routers however, high throughput provided by IEEE 802.11ac justifies the high cost associated with its routers.

Suggested Citation

  • Zawar Shah & Ashutosh Kolhe, 2017. "Throughput Analysis of IEEE 802.11ac and IEEE 802.11n in a Residential Home Environment," International Journal of Interdisciplinary Telecommunications and Networking (IJITN), IGI Global, vol. 9(1), pages 1-13, January.
  • Handle: RePEc:igg:jitn00:v:9:y:2017:i:1:p:1-13
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJITN.2017010101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jitn00:v:9:y:2017:i:1:p:1-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.