IDEAS home Printed from https://ideas.repec.org/a/igg/jhisi0/v15y2020i2p1-21.html
   My bibliography  Save this article

Performance Analysis of Machine Learning Algorithms for Cervical Cancer Detection

Author

Listed:
  • Sanjay Kumar Singh

    (I.K. Gujral Punjab Technical University, Kapurthala, Punjab, India)

  • Anjali Goyal

    (Department of Computer Applications, GNIMT, Ludhiana, Punjab, India)

Abstract

Cervical cancer is second most prevailing cancer in women all over the world and the Pap smear is one of the most popular techniques used to diagnosis cervical cancer at an early stage. Developing countries like India has to face the challenges in order to handle more cases day by day. In this article, various online and offline machine learning algorithms has been applied on benchmarked data sets to detect cervical cancer. This article also addresses the problem of segmentation with hybrid techniques and optimizes the number of features using extra tree classifiers. Accuracy, precision score, recall score, and F1 score are increasing in the proportion of data for training and attained up to 100% by some algorithms. Algorithm like logistic regression with L1 regularization has an accuracy of 100%, but it is too much costly in terms of CPU time in comparison to some of the algorithms which obtain 99% accuracy with less CPU time. The key finding in this article is the selection of the best machine learning algorithm with the highest accuracy. Cost effectiveness in terms of CPU time is also analysed.

Suggested Citation

  • Sanjay Kumar Singh & Anjali Goyal, 2020. "Performance Analysis of Machine Learning Algorithms for Cervical Cancer Detection," International Journal of Healthcare Information Systems and Informatics (IJHISI), IGI Global, vol. 15(2), pages 1-21, April.
  • Handle: RePEc:igg:jhisi0:v:15:y:2020:i:2:p:1-21
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJHISI.2020040101
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huseyin Cagan Kilinc & Iman Ahmadianfar & Vahdettin Demir & Salim Heddam & Ahmed M. Al-Areeq & Sani I. Abba & Mou Leong Tan & Bijay Halder & Haydar Abdulameer Marhoon & Zaher Mundher Yaseen, 2023. "Daily Scale River Flow Forecasting Using Hybrid Gradient Boosting Model with Genetic Algorithm Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3699-3714, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jhisi0:v:15:y:2020:i:2:p:1-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.