IDEAS home Printed from https://ideas.repec.org/a/igg/jgee00/v6y2015i2p1-11.html
   My bibliography  Save this article

The Optimized Dynamic Behavior of Short Embankment Based on Frequency Performance

Author

Listed:
  • Behrouz Gordan

    (Universiti Technologi Malaysia, Johor, Malaysia)

  • Azlan Adnan

    (Universiti Technologi Malaysia, Johor, Malaysia)

Abstract

Due to the performance of embankment under the earthquake, relative displacement at both edges of the crest is very important for body cracks. It can be computed by dynamic analysis. In this way, response spectrum analysis and Rayleigh damping coefficient are dependent factors to dominant frequency. Based on the new technology using advanced programs to compute frequency, free vibration analysis as the basic technique and considering of different vibration modes is accessible. This research tried to evaluate the distribution of dominant frequencies for short embankment (H=30 meter) using Finite-Element Method (ANSYS 13). To evaluate of the frequency, elasticity modulus ratio and foundation depth ratio were the main objectives. Both were defined by the ratio between the embankment and foundation. As a result, maximum and minimum vertical displacements were located on both slopes, and maximum horizontal displacement was exposed at the crest. The dominant frequency increased as the modulus ratio decreased. In addition, dominant frequency decreased as the depth ratio increased. The impact of the modulus ratio to enhance frequency was greater than the depth ratio. In terms of contributing engineering, the amplitude of the dominant frequency (Hz) was finally optimized for modulus ratios (0.25-1.00) and depth ratios (0.1-1.00). For critical situation, modulus ratio was more than three, and the depth ratio was half of the unit. More research about medium embankment is recommended.

Suggested Citation

  • Behrouz Gordan & Azlan Adnan, 2015. "The Optimized Dynamic Behavior of Short Embankment Based on Frequency Performance," International Journal of Geotechnical Earthquake Engineering (IJGEE), IGI Global, vol. 6(2), pages 1-11, July.
  • Handle: RePEc:igg:jgee00:v:6:y:2015:i:2:p:1-11
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJGEE.2015070101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jgee00:v:6:y:2015:i:2:p:1-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.