IDEAS home Printed from https://ideas.repec.org/a/igg/jehmc0/v4y2013i1p1-11.html
   My bibliography  Save this article

Personalized Mobile Applications for Remote Monitoring

Author

Listed:
  • Miguel A. Laguna

    (ETSI Informática, University of Valladolid, Valladolid, Spain)

  • Javier Finat

    (ETSI Informática, University of Valladolid, Valladolid, Spain)

Abstract

The development of mobile applications is a challenging activity. The main problems are the limits of the mobile devices (in memory size, processing power, battery duration, etc.) and the diversity of target platforms, display sizes, or input modes (keypads or tactile screens). For these reasons, the software product line (SPL) development paradigm can improve the process of designing and implementing mobile systems. The authors’ approach to SPL development uses the package merge relationship of the standard UML to represent the variability in all the SPL design and implementation models. The combination of this technique and conventional CASE and IDE tools (Eclipse or MS Visual Studio) makes the developments of SPLs for mobile applications easier as it removes the need for specialized tools and personnel. This article presents a SPL that makes possible the remote monitoring of dependent people to facilitate their autonomy. The SPL generic architecture uses Bluetooth wireless sensors connected to mobile devices. These devices are remotely connected to a central system, which could be used in hospitals or aged person’s residences. Moderate cost sensors allow health parameters such as heart rate or oxygen saturation level to be controlled. Risk situations can also be detected using a range of predefined values or specific sensors. The diversity of individual situations and the resource limitations favor the use of the SPL paradigm, as only the required features are incorporated in each concrete product.

Suggested Citation

  • Miguel A. Laguna & Javier Finat, 2013. "Personalized Mobile Applications for Remote Monitoring," International Journal of E-Health and Medical Communications (IJEHMC), IGI Global, vol. 4(1), pages 1-11, January.
  • Handle: RePEc:igg:jehmc0:v:4:y:2013:i:1:p:1-11
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jehmc.2013010101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jehmc0:v:4:y:2013:i:1:p:1-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.