Multi-Label Classification: An Overview
Author
Abstract
Suggested Citation
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yi-Hui Chen & Eric Jui-Lin Lu & Yu-Ting Lin & Ya-Wen Cheng, 2016. "Document overlapping clustering using formal concept analysis," Journal of Advances in Technology and Engineering Research, A/Professor Akbar A. Khatibi, vol. 2(2), pages 28-34.
- Hamid Bekamiri & Daniel S. Hain & Roman Jurowetzki, 2021. "PatentSBERTa: A Deep NLP based Hybrid Model for Patent Distance and Classification using Augmented SBERT," Papers 2103.11933, arXiv.org, revised Oct 2021.
- Radu Cristian Alexandru Iacob & Vlad Cristian Monea & Dan Rădulescu & Andrei-Florin Ceapă & Traian Rebedea & Ștefan Trăușan-Matu, 2020. "AlgoLabel: A Large Dataset for Multi-Label Classification of Algorithmic Challenges," Mathematics, MDPI, vol. 8(11), pages 1-18, November.
- Chaker Jebari, 2016. "Multi-Label Genre Classification of Web Pages Using an Adaptive Centroid-Based Classifier," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 15(01), pages 1-21, March.
- Francisco J. Ribadas-Pena & Shuyuan Cao & Víctor M. Darriba Bilbao, 2022. "Improving Large-Scale k -Nearest Neighbor Text Categorization with Label Autoencoders," Mathematics, MDPI, vol. 10(16), pages 1-22, August.
- Josef Schwaiger & Timo Hammerl & Johannsen Florian & Susanne Leist, 2021. "UR: SMART–A tool for analyzing social media content," Information Systems and e-Business Management, Springer, vol. 19(4), pages 1275-1320, December.
- Debaere, Steven & Coussement, Kristof & De Ruyck, Tom, 2018. "Multi-label classification of member participation in online innovation communities," European Journal of Operational Research, Elsevier, vol. 270(2), pages 761-774.
- Verwaeren, Jan & Waegeman, Willem & De Baets, Bernard, 2012. "Learning partial ordinal class memberships with kernel-based proportional odds models," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 928-942.
- Mohanrasu, S.S. & Janani, K. & Rakkiyappan, R., 2024. "A COPRAS-based Approach to Multi-Label Feature Selection for Text Classification," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 222(C), pages 3-23.
- Azzini, Antonia & Cortesi, Nicola & Marrara, Stefania & Topalović, Amir, 2019. "A Multi-Label Machine Learning Approach to Support Pathologist's Histological Analysis," Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference (2019), Rovinj, Croatia, in: Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference, Rovinj, Croatia, 12-14 September 2019, pages 197-208, IRENET - Society for Advancing Innovation and Research in Economy, Zagreb.
- Xueying Zhang & Qinbao Song, 2015. "A Multi-Label Learning Based Kernel Automatic Recommendation Method for Support Vector Machine," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-30, April.
- Junming Yin & Jerry Luo & Susan A. Brown, 2021. "Learning from Crowdsourced Multi-labeling: A Variational Bayesian Approach," Information Systems Research, INFORMS, vol. 32(3), pages 752-773, September.
- Tao Shu & Zhiyi Wang & Huading Jia & Wenjin Zhao & Jixian Zhou & Tao Peng, 2022. "Consumers’ Opinions towards Public Health Effects of Online Games: An Empirical Study Based on Social Media Comments in China," IJERPH, MDPI, vol. 19(19), pages 1-19, October.
- D. Thorleuchter & D. Van Den Poel, 2013. "Semantic Compared Cross Impact Analysis," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 13/862, Ghent University, Faculty of Economics and Business Administration.
- Bocheng Li & Yunqiu Zhang & Xusheng Wu, 2022. "DLKN-MLC: A Disease Prediction Model via Multi-Label Learning," IJERPH, MDPI, vol. 19(15), pages 1-15, August.
- Bogaert, Matthias & Lootens, Justine & Van den Poel, Dirk & Ballings, Michel, 2019. "Evaluating multi-label classifiers and recommender systems in the financial service sector," European Journal of Operational Research, Elsevier, vol. 279(2), pages 620-634.
- Huazhen Wang & Xin Liu & Bing Lv & Fan Yang & Yanzhu Hong, 2014. "Reliable Multi-Label Learning via Conformal Predictor and Random Forest for Syndrome Differentiation of Chronic Fatigue in Traditional Chinese Medicine," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-14, June.
- Han Zou & Jing Ge & Ruichao Liu & Lin He, 2023. "Feature Recognition of Regional Architecture Forms Based on Machine Learning: A Case Study of Architecture Heritage in Hubei Province, China," Sustainability, MDPI, vol. 15(4), pages 1-27, February.
- D. Thorleuchter & D. Van Den Poel & A. Prinzie & -, 2010. "A compared R&D-based and patent-based cross impact analysis for identifying relationships between technologies," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 10/632, Ghent University, Faculty of Economics and Business Administration.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jdwm00:v:3:y:2007:i:3:p:1-13. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.