IDEAS home Printed from https://ideas.repec.org/a/igg/jcac00/v11y2021i2p1-16.html
   My bibliography  Save this article

Assisted-Fog-Based Framework for IoT-Based Healthcare Data Preservation

Author

Listed:
  • Mohamed Sarrab

    (Sultan Qaboos University, Oman)

  • Fatma Alshohoumi

    (Sultan Qaboos University, Oman)

Abstract

Healthcare has witnessed a technological advancement in improving the quality of care and speeding the process of diagnosing patients due to its intervention with the internet of medical things. IoT in healthcare (H-IoT) plays a significant role in facilitating the process of diagnosing and detecting diseases. Different IoT-based medical sensors are used to measure biometrics and send them to the cloud for more analysis. However, the sensed data are massive and vary in their criticality level in which some sensed data are more critical (health-related data) than others. Moreover, computing such critical data in the cloud encounters some delay which is not preferable in real-time monitoring applications. Thus, this work proposes an IoT-fog-based framework to classify the streamed data according to their criticality level and compute the critical data in the fog to detect abnormalities with low latency and high response time. Before designing the proposed work, an analysis was conducted to explore the real data collected by IoT-based medical apps. The exploration of the data involved downloading and manually analyzing up-to-date privacy policies of eight IoT-based medical apps that provide details about data collection practices. The study showed that the streamed data in H-IoT include medical sensors data, apps registration data (personal information), device information, and other information related to cookies. The proposed work introduced the design of fog-based data classification and the algorithm for such classification. The implementation and evaluation of the proposed framework is future work.

Suggested Citation

  • Mohamed Sarrab & Fatma Alshohoumi, 2021. "Assisted-Fog-Based Framework for IoT-Based Healthcare Data Preservation," International Journal of Cloud Applications and Computing (IJCAC), IGI Global, vol. 11(2), pages 1-16, April.
  • Handle: RePEc:igg:jcac00:v:11:y:2021:i:2:p:1-16
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJCAC.2021040101
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Lansky & Mahyar Sadrishojaei & Amir Masoud Rahmani & Mazhar Hussain Malik & Faeze Kazemian & Mehdi Hosseinzadeh, 2022. "Development of a Lightweight Centralized Authentication Mechanism for the Internet of Things Driven by Fog," Mathematics, MDPI, vol. 10(22), pages 1-17, November.
    2. Ho Seoung Na & Junseok Hwang & Hongbum Kim, 2023. "Which Attributes Should be Considered in Regulating the Internet of Things? Evidence From Conjoint Analysis," SAGE Open, , vol. 13(4), pages 21582440231, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jcac00:v:11:y:2021:i:2:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.