IDEAS home Printed from https://ideas.repec.org/a/igg/japuc0/v8y2016i1p1-12.html
   My bibliography  Save this article

Image Edge Detection Based on Ant Colony Optimization Algorithm

Author

Listed:
  • Yin Huan

    (North China Electric Power University, Baoding, China)

Abstract

Ant colony optimization (ACO) is a new heuristic algorithm which has been proven a successful technique. The article applies the ACO to the image edge detection, get edge image edge according to different neighborhood access policy through MATLAB simulation, and use the best neighborhood strategy to get detection. Compared with the traditional edge detection methods, the algorithm can effectively suppress the noise interference, retain most of the effective information of the image.

Suggested Citation

  • Yin Huan, 2016. "Image Edge Detection Based on Ant Colony Optimization Algorithm," International Journal of Advanced Pervasive and Ubiquitous Computing (IJAPUC), IGI Global, vol. 8(1), pages 1-12, January.
  • Handle: RePEc:igg:japuc0:v:8:y:2016:i:1:p:1-12
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJAPUC.2016010101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:japuc0:v:8:y:2016:i:1:p:1-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.