IDEAS home Printed from https://ideas.repec.org/a/ids/injdan/v5y2013i2p122-147.html
   My bibliography  Save this article

Clustering genome data based on approximate matching

Author

Listed:
  • Nagamma Patil
  • Durga Toshniwal
  • Kumkum Garg

Abstract

Genome data mining and knowledge extraction is an important problem in bioinformatics. Some research work has been done for genome identification based on exact matching of n-grams. However, in most real world biological problems, it may not be feasible to have an exact match, so approximate matching may be desired. The problem in using n-grams is that the number of features (4n for DNA sequence and 20n for protein sequence) increases with increase in n. In this paper, we propose an approach for genome data clustering based on approximate matching. Generally genome sequences are very long, so we sample the data into 10,000 base pairs. Given a database of genome sequences, our proposed work includes extraction of total number of approximate matching patterns to a query with given fault tolerance and then using this total number of matches for clustering. Candidate length is varied so as to allow both positive and negative tolerance and hence the number of features used for clustering also varies. K-means, fuzzy C-means (FCM) and possibilistic C-means (PCM) algorithms are used for clustering of the genome data. Experimental results obtained by varying tolerance from 20% to 70% are reported. It has been observed that as tolerance increases, number of genome samples that are correctly clustered also increases and our proposed approach outperforms existing n-gram frequency based approach. Two different genome datasets are used to verify the proposed method namely yeast, E. coli and Drosophila, mouse.

Suggested Citation

  • Nagamma Patil & Durga Toshniwal & Kumkum Garg, 2013. "Clustering genome data based on approximate matching," International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 5(2), pages 122-147.
  • Handle: RePEc:ids:injdan:v:5:y:2013:i:2:p:122-147
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=53678
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:injdan:v:5:y:2013:i:2:p:122-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=282 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.