IDEAS home Printed from
   My bibliography  Save this article

Correlation modelling of complex data – physics, statistics and heuristics


  • Kenneth W. Jackson
  • Mahmood Tabaddor


In this paper, we cover some principles and guidelines that are useful for modelling and interpreting data associated with highly complex physical phenomena such as occur in multidisciplinary fields. We compare and contrast the theoretical and statistical-empirical modelling paradigms and discuss how they interact and are complementary. Using an example taken from the field of fire engineering, we review how the approach can influence the efficiency and effectiveness of experimental or numerical investigations. We show how integrating dimensional analysis with experimental design techniques and regression modelling can reduce experimentation schedules and costs and improve insight. We further illustrate several useful strategies and caveats for modelling highly complex data. We describe some common limitations and misconceptions of data analysis along with features of graphical representation that can facilitate interpretation.

Suggested Citation

  • Kenneth W. Jackson & Mahmood Tabaddor, 2010. "Correlation modelling of complex data – physics, statistics and heuristics," International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 2(4), pages 336-355.
  • Handle: RePEc:ids:injdan:v:2:y:2010:i:4:p:336-355

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:injdan:v:2:y:2010:i:4:p:336-355. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Darren Simpson). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.