IDEAS home Printed from
   My bibliography  Save this article

A meta-heuristic approach to car allocation problem to reduce transportation cost over a fixed number of routes


  • Prasun Das
  • Saddam Hossain
  • Abhijit Gupta


This study addresses the problem of car allocation to different routes under certain restrictions with the objective of reducing the excess cost of transportation. A meta-heuristic approach based on Ant Colony Optimisation (ACO) algorithm is proposed and implemented to schedule the cars efficiently along the routes under the existing logistics. A mathematical model with two objectives is formulated for this purpose and solved in two phases. In the first phase, sequences of allocated cars are determined while in the second, car allocation scheme for each trip is determined using ACO algorithm. The simulation study is carried out from the empirical distributions of distance and time, followed by the sensitivity analysis on the basis of their stochastic behaviour. The cost benefit analysis shows a projected savings in terms of reduction of cost of travel, both with respect to distance and time, through the solutions obtained.

Suggested Citation

  • Prasun Das & Saddam Hossain & Abhijit Gupta, 2010. "A meta-heuristic approach to car allocation problem to reduce transportation cost over a fixed number of routes," International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 2(1), pages 85-102.
  • Handle: RePEc:ids:injdan:v:2:y:2010:i:1:p:85-102

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:injdan:v:2:y:2010:i:1:p:85-102. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Darren Simpson). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.