IDEAS home Printed from
   My bibliography  Save this article

Application of Support Vector Machine (SVM) and Proximal Support Vector Machine (PSVM) for fault classification of monoblock centrifugal pump


  • N.R. Sakthivel
  • V. Sugumaran
  • Binoy B. Nair


Monoblock centrifugal pumps are widely used in a variety of applications. Defects and malfunctions (faults) of these pumps result in significant economic loss. Therefore, the pumps must be under constant monitoring. When a possible fault is detected, diagnosis is carried out to pinpoint it. In many applications, the role of monoblock centrifugal pumps is critical and condition monitoring is essential. Vibration-based condition monitoring and analysis using the machine-learning approach is gaining momentum. In particular, Artificial Neural Networks (ANNs), fuzzy logic and roughsets have been employed for condition monitoring and fault diagnosis. While it is difficult to train the neural network-based fault classifier, the classification accuracy in case of fuzzy logic- and roughest-based fault classifiers is not very high. This paper presents the use of Support Vector Machines (SVMs) and Proximal Support Vector Machines (PSVMs) for classifying faults using statistical features extracted from vibration signals under good and faulty conditions of a monoblock centrifugal pump. The Decision Tree (DT) algorithm is used to select prime features. These features are fed as inputs for training and testing SVMs and PSVMs and their fault classification accuracy is compared. The results are found to be better than neural network-, fuzzy- and roughest-based methods.

Suggested Citation

  • N.R. Sakthivel & V. Sugumaran & Binoy B. Nair, 2010. "Application of Support Vector Machine (SVM) and Proximal Support Vector Machine (PSVM) for fault classification of monoblock centrifugal pump," International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 2(1), pages 38-61.
  • Handle: RePEc:ids:injdan:v:2:y:2010:i:1:p:38-61

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:injdan:v:2:y:2010:i:1:p:38-61. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Darren Simpson). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.