IDEAS home Printed from https://ideas.repec.org/a/ids/ijidsc/v17y2025i4p357-370.html

Pothole detection and localisation from images using deep learning

Author

Listed:
  • Archit Dhiman
  • Mohit Kumar
  • Arun Kumar Yadav
  • Divakar Yadav

Abstract

The existence of potholes threatens road safety and contributes to a significant portion of accidents worldwide. It takes a lot of work to constantly patch potholes and keep track of when new ones appear. Our goal in this work is to create a pothole detection system that would make it simpler to accurately detect potholes from images. The system can potentially save human lives and assist the government authorities to fix the potholes. In order to achieve this objective, we first make use of a pre-trained deep learning model (VGG-16) and thereafter, propose a novel convolutional neural network (CNN) model. This work employs a publicly available dataset, Nienaber Potholes 2 (Complex), for experiments. The proposed model provides 98.87% accuracy on pothole classification task in images and outperforms recent state-of-the-art approaches in the literature. Further, since no past work has been done on this dataset to detect bounding boxes for potholes, we use YOLO-v3 and YOLO-v5 to generate bounding box predictions on this dataset and evaluate the results. The bounding box task achieves 83.23% mAP and 87.45% precision. Due to the absence of significant existing results, these results for bounding box prediction may be considered as a benchmark.

Suggested Citation

  • Archit Dhiman & Mohit Kumar & Arun Kumar Yadav & Divakar Yadav, 2025. "Pothole detection and localisation from images using deep learning," International Journal of Information and Decision Sciences, Inderscience Enterprises Ltd, vol. 17(4), pages 357-370.
  • Handle: RePEc:ids:ijidsc:v:17:y:2025:i:4:p:357-370
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=150097
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijidsc:v:17:y:2025:i:4:p:357-370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=306 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.