IDEAS home Printed from https://ideas.repec.org/a/ids/ijgeni/v47y2025i4-5p391-403.html
   My bibliography  Save this article

A data-driven energy consumption prediction method for building electrical equipment based on data-driven

Author

Listed:
  • Xiulan Yin
  • Huiting Liang

Abstract

A data-driven energy consumption prediction method for building electrical equipment based on data-driven is proposed to address the issues of unstable prediction results and low accuracy in existing methods. Multiple sensors are selected to collect voltage, power, temperature and humidity data of electrical equipment. The mean filling method is used to fill in the missing values of the collected data. The K-means algorithm is used to detect anomalies in the filled data, identify and remove abnormal clusters or samples. Based on the data processing results, particle swarm optimisation algorithm is used to train energy consumption data, construct an energy consumption prediction model and achieve energy consumption detection through this model. The experimental results show that the highest prediction accuracy of this method is 98.5%, and the difference between the predicted results and actual energy consumption is small, indicating that the stability and robustness of this method are strong.

Suggested Citation

  • Xiulan Yin & Huiting Liang, 2025. "A data-driven energy consumption prediction method for building electrical equipment based on data-driven," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 47(4/5), pages 391-403.
  • Handle: RePEc:ids:ijgeni:v:47:y:2025:i:4/5:p:391-403
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=147237
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijgeni:v:47:y:2025:i:4/5:p:391-403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=13 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.