IDEAS home Printed from https://ideas.repec.org/a/ids/ijgeni/v47y2025i4-5p371-390.html
   My bibliography  Save this article

Robust and efficient hybrid autoencoder-ADAM (HAA) algorithm for analysing anomalies in Indian electricity consumption data

Author

Listed:
  • M. Ravinder
  • Vikram Kulkarni

Abstract

Anomaly detection in electricity-consumption data plays a crucial role in ensuring the reliability and stability of modern smart-grid systems. In this study, we propose the Hybrid Autoencoder-ADAM (HAA) algorithm, specifically designed for anomaly detection in Indian electricity consumption data from 2014 to 2023, considering distinct seasonal patterns. The HAA algorithm combines autoencoders with adaptive optimisation (ADAM) to effectively capture and reconstruct normal consumption patterns. Comparative analysis show that the HAA algorithm outperforms Long Short-Term Memory (LSTM) and XGBoost in accuracy and robustness for anomaly detection. It demonstrates adaptability across different seasons, regions and periods, offering valuable insights for advancing smart grid analytics and energy conservation strategies. Future research includes hyper-parameter optimisation and exploring ensemble methods to enhance its real-world applicability in operational smart-grid scenarios. The HAA algorithm presents a promising approach for large-scale smart grid anomaly detection, emphasising its efficiency and effectiveness in improving energy management and resource optimisation.

Suggested Citation

  • M. Ravinder & Vikram Kulkarni, 2025. "Robust and efficient hybrid autoencoder-ADAM (HAA) algorithm for analysing anomalies in Indian electricity consumption data," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 47(4/5), pages 371-390.
  • Handle: RePEc:ids:ijgeni:v:47:y:2025:i:4/5:p:371-390
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=147225
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijgeni:v:47:y:2025:i:4/5:p:371-390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=13 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.