IDEAS home Printed from https://ideas.repec.org/a/ids/ijetpo/v16y2020i4p327-352.html
   My bibliography  Save this article

Energy, exergy and exergoeconomic analyses and optimisation of 137 MW gas power station implementing MOPSOCD

Author

Listed:
  • Rajesh Arora

Abstract

Performance evaluation and optimisation of operating parameters of gas power plants are the key challenges for the researchers and the power plant designers. Traditional performance evaluation techniques being utilised operate on the first law of thermodynamics. Exhaustive studies in this area suggest scope of improvement in view of power output, thermal efficiency and cost effectiveness through more valuable evaluation techniques as second law analysis, exergoeconomic analysis and evolutionary algorithms. In this perspective, energy, exergy and exergoeconomic investigations of the gas power plant are executed in context with 1st and 2nd laws of thermodynamics. The multi-objective optimisation is also performed using NSGA-II and MOPSOCD evolutionary algorithms in MATLAB 9.2 in order to explore best input parameters and to find best trade off amongst two challenging objectives. The validation of the present work is done by correlating the obtained outcomes with 137 MW running gas power plant, Faridabad, India. The analysis illustrates a considerable enhancement in exergy efficiency of the power plant (around 18%) with a drop-in cost of the fuel and product as 15.72% and 13.24% respectively. However, total capital cost is increased by 10.61%.

Suggested Citation

  • Rajesh Arora, 2020. "Energy, exergy and exergoeconomic analyses and optimisation of 137 MW gas power station implementing MOPSOCD," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 16(4), pages 327-352.
  • Handle: RePEc:ids:ijetpo:v:16:y:2020:i:4:p:327-352
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=107954
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijetpo:v:16:y:2020:i:4:p:327-352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=12 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.