IDEAS home Printed from https://ideas.repec.org/a/ids/ijetpo/v11y2015i4p394-406.html
   My bibliography  Save this article

Optimised design for magnetorheological brake using DOE methods

Author

Listed:
  • J. Thanikachalam
  • P. Nagaraj

Abstract

Nowadays, the automobile systems like suspension, transmission, braking and clutch systems are controlled through the wire concept. To overcome the drawbacks of the existing conventional hydraulic braking system (CHB), magnetorheological brake (MRB) is introduced in this project. CHB require complex mechanical parts to dissipate energy. A magnetorheological fluid (MRF) brake is more efficient than conventional braking system in terms of weight reduction and response time. The research work is concerned with the development of a new braking system which employs MRF as working medium. MRB design proposed in earlier studies is to be further improved according to additional practical design criteria and constraints and more in-depth electromagnetic finite element analysis. The design procedure comprises the selection of materials for MRB, creating an analytical model for finding the braking torque produced by the MRB and finite element analysis of the MRB.

Suggested Citation

  • J. Thanikachalam & P. Nagaraj, 2015. "Optimised design for magnetorheological brake using DOE methods," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 11(4), pages 394-406.
  • Handle: RePEc:ids:ijetpo:v:11:y:2015:i:4:p:394-406
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=74163
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijetpo:v:11:y:2015:i:4:p:394-406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=12 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.