IDEAS home Printed from https://ideas.repec.org/a/ids/ijetma/v4y2004i1-2p116-136.html
   My bibliography  Save this article

CO 2 absorption study in a bubble column reactor with Mg(OH) 2

Author

Listed:
  • Kyung Sook Jung
  • Tim C. Keener
  • Vicki C. Green
  • Soon-Jai Khang

Abstract

CO2 from the combustion of fossil fuels is the largest source of greenhouse gas emissions in the USA. Recently, there has been a growing interest in economical processes for the separation and sequestration of CO2 emissions from flue gas. The goal of this study was to study the absorption characteristics of CO2 from a simulated flue gas using reclaimed Mg(OH)2 slurries. Mg(OH)2 has been selected as the scrubbing agent because of a number of beneficial technical and economic factors. Magnesium hydroxide slurries provide for high CO2 uptake capabilities, and as a by-product of magnesium-enhanced FGD systems, the material will be readily available, and its production will not result in the release of additional CO2 emissions to the atmosphere. The experimental results included a detailed analysis of the absorption chemistry in a bubble column reactor. A number of experiments were conducted to determine the activation energy and order of reaction for this gas-liquid reaction. It was found that the reaction rate between magnesium hydroxide and CO2 follows a first-order reaction, and the activation energy was calculated to be 7700 cal/mol. In addition, a study was undertaken to determine the mass transfer characteristics of the bubble column reactor. A model describing CO2 absorption into clear solutions from a bubble was developed assuming a known bubble size, solution equilibrium chemistry and overall mass transfer coefficients from the gas phase to the liquid. The overall mass transfer coefficients were found to vary from 6.05x10-6~6.63x10-7 cm/s for the temperature range of 22°C~60°C. Absorption experiments were also conducted with sodium hydroxide solutions and the value of KAG with NaOH solution was found to be 8.88x10-6 cm/s.

Suggested Citation

  • Kyung Sook Jung & Tim C. Keener & Vicki C. Green & Soon-Jai Khang, 2004. "CO 2 absorption study in a bubble column reactor with Mg(OH) 2," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 4(1/2), pages 116-136.
  • Handle: RePEc:ids:ijetma:v:4:y:2004:i:1/2:p:116-136
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=4625
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijetma:v:4:y:2004:i:1/2:p:116-136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=11 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.