IDEAS home Printed from https://ideas.repec.org/a/ids/ijdmmm/v15y2023i1p102-131.html
   My bibliography  Save this article

Optimising data quality of a data warehouse using data purgation process

Author

Listed:
  • Neha Gupta

Abstract

The rapid growth of data collection and storage services has impacted the quality of the data. Data purgation process helps in maintaining and improving the data quality when the data is subject to extract, transform and load (ETL) methodology. Metadata may contain unnecessary information which can be defined as dummy values, cryptic values or missing values. The present work has improved the EM algorithm with dot product to handle cryptic data, DBSCAN method with Gower metrics has been implemented to ensure dummy values, Wards algorithm with Minkowski distance has been applied to improve the results of contradicting data and K-means algorithm along with Euclidean distance metrics has been applied to handle missing values in a dataset. These distance metrics have improved the data quality and also helped in providing consistent data to be loaded into a data warehouse. The proposed algorithms have helped in maintaining the accuracy, integrity, consistency, non-redundancy of data in a timely manner.

Suggested Citation

  • Neha Gupta, 2023. "Optimising data quality of a data warehouse using data purgation process," International Journal of Data Mining, Modelling and Management, Inderscience Enterprises Ltd, vol. 15(1), pages 102-131.
  • Handle: RePEc:ids:ijdmmm:v:15:y:2023:i:1:p:102-131
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=129961
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijdmmm:v:15:y:2023:i:1:p:102-131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=342 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.