IDEAS home Printed from https://ideas.repec.org/a/ids/ijdmmm/v14y2022i3p217-233.html
   My bibliography  Save this article

Synergistic effects between data corpora properties and machine learning performance in data pipelines

Author

Listed:
  • Roberto Bertolini
  • Stephen J. Finch

Abstract

To analyse data, a computationally feasible pipeline must be developed for data modelling. Corpora properties affect performance variability of machine learning (ML) techniques in pipelines; however, this has not been thoroughly investigated using simulation methodologies. A Monte Carlo study is used to compare differences in the area under the curve (AUC) metric for large-n-small-p-corpora examining: 1) the choice of ML algorithm; 2) size of the training database; 3) measurement error; 4) class imbalance magnitude; 5) missing data pattern. Our simulations are consistent with established results under which these algorithms and corpora properties perform best, while providing insights into their synergistic effects. Measurement error negatively impacted pipeline performance across all corpora factors and ML algorithms. A larger training corpus ameliorated the decrease in predictive efficacy resulting from measurement error, class imbalance magnitudes, and missing data patterns. We discuss the implications of these findings for designing pipelines to enhance prediction performance.

Suggested Citation

  • Roberto Bertolini & Stephen J. Finch, 2022. "Synergistic effects between data corpora properties and machine learning performance in data pipelines," International Journal of Data Mining, Modelling and Management, Inderscience Enterprises Ltd, vol. 14(3), pages 217-233.
  • Handle: RePEc:ids:ijdmmm:v:14:y:2022:i:3:p:217-233
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=125261
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijdmmm:v:14:y:2022:i:3:p:217-233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=342 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.