IDEAS home Printed from https://ideas.repec.org/a/ids/ijcist/v21y2025i6p640-662.html

Detecting malware in linguistic data using malware detection deep belief neural network method

Author

Listed:
  • M. Gomathy
  • A. Vidhya

Abstract

The widespread usage of high-end digital technologies has greatly increased cyber risks. To fight cybercrimes, a smart model should categorise and learn from data autonomously. Internet connectivity has made people's lifestyles more intertwined, and virtual collaboration is happening across regions. Pop-up messages also entice users and enable fraud. We use a neural network to predict unexpected pop-up message content in this paper. Modern malware and its powerful obfuscation algorithms have made traditional malware detection methods ineffective. However, deep belief neural networks (DBNNs) have garnered attention from researchers for malware detection to fight conventional cybercrime prevention methods in the long run. MDDBNN (malware detection deep belief neural network), based on file properties and contents, is proposed in this research for malware classification. The CLaMP Integrated dataset provided 5210 instances for training and testing. MDDBNN beats GaussianNB, LDA, logistic regression, and support vector machine (SVM). This study found that MDDBNN has the highest accuracy of 97.8%.

Suggested Citation

  • M. Gomathy & A. Vidhya, 2025. "Detecting malware in linguistic data using malware detection deep belief neural network method," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 21(6), pages 640-662.
  • Handle: RePEc:ids:ijcist:v:21:y:2025:i:6:p:640-662
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=150792
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijcist:v:21:y:2025:i:6:p:640-662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=58 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.