IDEAS home Printed from https://ideas.repec.org/a/ids/ijcist/v21y2025i6p533-554.html

Efficient marine debris infrastructures on optimising SVM with LoG segmentation for enhanced IoR, DC and Hausdorff distance performances

Author

Listed:
  • S. Belina V.J. Sara
  • A. Jayanthiladevi

Abstract

In the face of escalating threats to aquatic ecosystems posed by marine debris, the demand for precise and efficient classification techniques becomes paramount. This study employs image segmentation methods Canny edge detection, Sobel operator, and Laplacian of Gaussian (LoG) to partition photographs of maritime trash. A notable addition is the integration of SVM-based classification, offering promising avenues for environmental surveillance and disaster management. By incorporating the LoG process, the identification of blob-like structures enhances the accuracy of debris segmentation. Comparative analysis utilising metrics like intersection over union (IoU), dice coefficient, and Hausdorff distance underscores the efficacy of the combined LoG and SVM approach. This synergistic method adeptly detects edges via the LoG operator and ensures accurate debris classification through SVM modelling. The results demonstrate significant improvements, yielding higher IoU (0.993), dice coefficient (0.996), and minimal Hausdorff distance (0.0000977). Executed in Python, this research propels marine debris analysis forward by furnishing a robust framework for automatic image categorisation, which is vital for initiatives aimed at environmental preservation.

Suggested Citation

  • S. Belina V.J. Sara & A. Jayanthiladevi, 2025. "Efficient marine debris infrastructures on optimising SVM with LoG segmentation for enhanced IoR, DC and Hausdorff distance performances," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 21(6), pages 533-554.
  • Handle: RePEc:ids:ijcist:v:21:y:2025:i:6:p:533-554
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=150791
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijcist:v:21:y:2025:i:6:p:533-554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=58 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.