Author
Listed:
- Thirukumaran Subramani
- Priyanka Mathur
- Sohail Imran Khan
- P. Suganya
- Sukhwinder Sharma
- Sunita Sachin Dhotre
Abstract
Artificial intelligence (AI) has dramatically transformed the electric power management sector, ushering in higher levels of efficiency, sustainability, and intelligent energy distribution. This shift has enabled more optimised consumption patterns and significantly reduced waste. However, AI complicates power management, particularly environmental and social governance (ESG). This study analyses the pros and cons of AI-powered electric power sector ESG issues. While AI improves power management through predictive maintenance and demand-response optimisation, it also presents transparency issues related to its decision-making algorithms, complicating ESG adherence. To address these concerns, we introduce a novel architectural framework designed to enhance transparency and directly confront ESG challenges associated with AI in power management. Our thorough trials validate the concept, presenting a potential strategy to harmonising technical advancement with ESG principles. The findings demonstrate the need for a balanced approach, embracing AI's potential to transform power management and ESG challenges. A sustainable and equitable future for power management technology requires this balance. Our research shows the importance of proactive ESG engagement in the AI era and the framework's ability to create a more open, accountable, and sustainable power management paradigm.
Suggested Citation
Thirukumaran Subramani & Priyanka Mathur & Sohail Imran Khan & P. Suganya & Sukhwinder Sharma & Sunita Sachin Dhotre, 2025.
"Environmental and social governance issues in AI-era electric power management and information disclosure,"
International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 21(5), pages 470-494.
Handle:
RePEc:ids:ijcist:v:21:y:2025:i:5:p:470-494
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijcist:v:21:y:2025:i:5:p:470-494. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=58 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.