Author
Listed:
- Zohra Bouzidi
- Labib Sadek Terrissa
- Noureddine Zerhouni
- Soheyb Ayad
Abstract
Recently, prognostics and health management (PHM) solutions are increasingly implemented in order to complete maintenance activities. The prognostic process in industrial maintenance is the main step to predict failures before they occur by determining the remaining useful life (RUL) of the equipment. However, it also poses challenges such as reliability, availability, infrastructure and physics servers. To address these challenges, this paper investigates a cloud-based prognostic system of an aircraft engine based on artificial intelligence methods. We design and implement an architecture that defines an approach that is prognostic as a service (Prognostic aaS) using a data-driven approach. This approach will provide a suitable and efficient PHM solution as a service via internet, on the demand of a client, in accordance with a service level agreement (SLA) contract drawn up in advance to ensure a better quality of service and pay this service per use (pay as you go). We estimated the RUL of aircraft engines fleet by implementing three techniques. Next, we studied the performance of this system; the efficient method was concluded. In addition, we discussed the quality of service (QoS) for the cloud prognostic application according to the factors of quality. [Received: 19 May 2018; Revised: 10 August 2018; Revised: 31 August 2018; Revised: 21 March 2019; Accepted: 28 March 2019]
Suggested Citation
Zohra Bouzidi & Labib Sadek Terrissa & Noureddine Zerhouni & Soheyb Ayad, 2020.
"QoS of cloud prognostic system: application to aircraft engines fleet,"
European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 14(1), pages 34-57.
Handle:
RePEc:ids:eujine:v:14:y:2020:i:1:p:34-57
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:eujine:v:14:y:2020:i:1:p:34-57. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=210 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.