IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/9158185.html
   My bibliography  Save this article

A New Efficient Filtering Model for GPS/SINS Ultratight Integration System

Author

Listed:
  • Chaochen Wang
  • Yuming Bo
  • Changhui Jiang

Abstract

Global Positioning System (GPS) and strap-down inertial navigation system (SINS) are recognized as highly complementary and widely employed in the community. The GPS has the advantage of providing precise navigation solutions without divergence, but the GPS signals might be blocked and attenuated. The SINS is a totally self-contained navigation system which is hardly disturbed. The GPS/SINS integration system could utilize the advantages of both the GPS and SINS and provide more reliable navigation solutions. According to the data fusion strategies, the GPS/SINS integrated system could be divided into three different modes: loose, tight, and ultratight integration (LI, TI, and UTC). In the loose integration mode, position and velocity difference from the GPS and SINS are employed to compose measurement vector, in which the vector dimension has nothing to do with the amount of the available satellites. However, in the tight and ultratight modes, difference of pseudoranges and pseudorange rates from the GPS and SINS are employed to compose the measurement vector, in which the measurement vector dimension increases with the amount of available satellites. In addition, compared with the loose integration mode, clock bias and drift are included in the integration state model. The two characteristics magnify the computation load of the tight and ultratight modes. In this paper, a new efficient filter model was proposed and evaluated. Two schemes were included in this design for reducing the computation load. Firstly, a difference between pseudorange measurements was determined, by which clock bias and drift were excluded from the integration state model. This step reduced the dimension of the state vector. Secondly, the integration filter was divided into two subfilters: pseudorange subfilter and pseudorange rate subfilter. A federated filter was utilized to estimate the state errors optimally. In the second step, the two subfilters could run in parallel and the measurement vector was divided into two subvectors with lower dimension. A simulation implemented in MATLAB software was conducted to evaluate the performance of the new efficient integration method in UTC. The simulation results showed that the method could reduce the computation load with the navigation solutions almost unchanged.

Suggested Citation

  • Chaochen Wang & Yuming Bo & Changhui Jiang, 2020. "A New Efficient Filtering Model for GPS/SINS Ultratight Integration System," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-10, March.
  • Handle: RePEc:hin:jnlmpe:9158185
    DOI: 10.1155/2020/9158185
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/9158185.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/9158185.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/9158185?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9158185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.