IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/858260.html
   My bibliography  Save this article

Short-Term Coalmine Gas Concentration Prediction Based on Wavelet Transform and Extreme Learning Machine

Author

Listed:
  • Wu Xiang
  • Qian Jian-sheng
  • Huang Cheng-hua
  • Zhang Li

Abstract

It is well known that coalmine gas concentration forecasting is very significant to ensure the safety of mining. Owing to the high-frequency, nonstationary fluctuations and chaotic properties of the gas concentration time series, a gas concentration forecasting model utilizing the original raw data often leads to an inability to provide satisfying forecast results. A hybrid forecasting model that integrates wavelet transform and extreme learning machine (ELM) termed as WELM (wavelet based ELM) for coalmine gas concentration is proposed. Firstly, the proposed model employs Mallat algorithm to decompose and reconstruct the gas concentration time series to isolate the low-frequency and high-frequency information. Then, ELM model is built for the prediction of each component. At last, these predicted values are superimposed to obtain the predicted values of the original sequence. This method makes an effective separation of the feature information of gas concentration time series and takes full advantage of multi-ELM prediction models with different parameters to achieve divide and rule. Comparative studies with existing prediction models indicate that the proposed model is very promising and can be implemented in one-step or multistep ahead prediction.

Suggested Citation

  • Wu Xiang & Qian Jian-sheng & Huang Cheng-hua & Zhang Li, 2014. "Short-Term Coalmine Gas Concentration Prediction Based on Wavelet Transform and Extreme Learning Machine," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-8, July.
  • Handle: RePEc:hin:jnlmpe:858260
    DOI: 10.1155/2014/858260
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2014/858260.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2014/858260.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/858260?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuang Song & Shugang Li & Tianjun Zhang & Li Ma & Shaobo Pan & Lu Gao, 2021. "Research on a Multi-Parameter Fusion Prediction Model of Pressure Relief Gas Concentration Based on RNN," Energies, MDPI, vol. 14(5), pages 1-18, March.
    2. Xiangrui Meng & Haoqian Chang & Xiangqian Wang, 2022. "Methane Concentration Prediction Method Based on Deep Learning and Classical Time Series Analysis," Energies, MDPI, vol. 15(6), pages 1-15, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:858260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.