IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/5965089.html
   My bibliography  Save this article

A Deep Cycle Limit Learning Machine Method for Urban Expressway Traffic Incident Detection

Author

Listed:
  • YunFeng Fang
  • Qingfang Yang
  • Lili Zheng
  • Xiangyu Zhou
  • Bo Peng

Abstract

In Beijing, Shanghai, Hangzhou, and other cities in China, traffic congestion caused by traffic incidents also accounts for 50% to 75% of the total traffic congestion on expressways. Therefore, it is of great significance to study an accurate and timely automatic traffic incident detection algorithm for ensuring the operation efficiency of expressways and improving the level of road safety. At present, many effective automatic event detection algorithms have been proposed, but the existing algorithms usually take the original traffic flow parameters as input variables, ignoring the construction of feature variable sets and the screening of important feature variables. This paper presents an automatic event detection algorithm based on deep cycle limit learning machine. The traffic flow, speed, and occupancy of downstream urban expressway are extracted as input values of the deep-loop neural network. The initial connection weights and output thresholds of the deep-loop neural network are optimized by using the improved particle swarm optimization (PSO) algorithm for global search. The higher classification accuracy of the extreme learning machine is trained, and the generalization performance of the extreme learning machine is improved. In addition, the extreme learning machine is used as a learning unit for unsupervised learning layer by layer. Finally, the microwave detector data of Tangqiao viaduct in Hangzhou are used to verify the experiment and compared with LSTM, CNN, gradient-enhanced regression tree, SVM, BPNN, and other methods. The results show that the algorithm can transfer low-level features layer by layer to form a more complete feature representation, retaining more original input information. It can save expensive computing resources and reduce the complexity of the model. Moreover, the detection accuracy of the algorithm is high, the detection rate is higher than 98%, and the false alarm rate is lower than 3%. It is better than LSTM, CNN, gradient-enhanced regression tree, and other algorithms. It is suitable for urban expressway traffic incident detection.

Suggested Citation

  • YunFeng Fang & Qingfang Yang & Lili Zheng & Xiangyu Zhou & Bo Peng, 2020. "A Deep Cycle Limit Learning Machine Method for Urban Expressway Traffic Incident Detection," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-11, July.
  • Handle: RePEc:hin:jnlmpe:5965089
    DOI: 10.1155/2020/5965089
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/5965089.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/5965089.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/5965089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5965089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.