IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/580637.html
   My bibliography  Save this article

A self-consistent numerical method for simulation of quantum transport in high electron mobility transistor; part II: The full quantum transport

Author

Listed:
  • R. Khoie

Abstract

In Part I of this paper we reported a self-consistent Boltzmann-Schrödinger-Poisson simulator for HEMT in which only electrons in the first subband were assumed to be quantized with their motion restricted to 2 dimensions. In that model, the electrons in the second and higher subbands were treated as bulk system behaving as a 3 dimensional electron gas. In Part II of this paper, we extend our simulator to a self-consistent full-quantum model in which the electrons in the second subband are also treated as quantized 2 dimensional gas. In this model, we consider the electrons in the lowest two subbands to be in the quantum well forming the 2-dimensional electron gas, and the electrons in the third and higher subbands to behave as bulk electrons with no restrictions in their motion. We have further incorporated an additional self-consistency by calculating the field-dependent, energy-dependent scattering rates due to ionized impurities and polar optical phonons. The two higher moments of Boltzmann transport equation are numerically solved for the two lowest subbands and the bulk system; six transport equations, four for the two subbands and two for the bulk system. The Schrödinger and Poisson equations are also solved self-consistently. The wavefunctions obtained are used to calculate the ionized impurity scattering and the polar optical phonon scattering rates. The rates of transfer of electrons and their energies to and from each subband are calculated from these intersubband and intrasubband scattering rates.

Suggested Citation

  • R. Khoie, 1996. "A self-consistent numerical method for simulation of quantum transport in high electron mobility transistor; part II: The full quantum transport," Mathematical Problems in Engineering, Hindawi, vol. 2, pages 1-13, January.
  • Handle: RePEc:hin:jnlmpe:580637
    DOI: 10.1155/S1024123X96000336
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2/580637.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2/580637.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/S1024123X96000336?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:580637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.