IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/5534003.html
   My bibliography  Save this article

Numerical Simulation of Droplet Impacting and Sliding on Hydrophobic Granular Surfaces

Author

Listed:
  • Qing Bao
  • Hengyi Kang

Abstract

Droplet sliding naturally happens with practical significance in developing artificial self-cleaning surfaces or impermeable barriers. On water-repellent soil surfaces, such processes evolve at very small scales, typically at the particle level. To address this, this paper presents a two-dimensional Lattice Boltzmann (LB) study on the droplet sliding dynamics on a layer of regularly arranged particles with varying size and contact angle (CA) aimed at mimicking conditions comparable to those of real soils. The numerical droplet is initialized above the inclined granular surface with different lifting distances and deposited by gravity. The droplet hits the surface with different impacting velocities and subsequently slides down the slope. Four droplet-sliding behaviors were observed: a droplet sticks to the granular surface, a droplet moves by pinning and depinning of its interface (“stick-slip”), a droplet undergoes periodic elongation and shortening during sliding, and a droplet lifts off the granular surface and may be ruptured. For a droplet that displays the “stick-slip” behavior, the sliding velocity reaches a converged terminal velocity, which increases with a higher CA, a more inclined slope, and a smaller particle size. However, nonunique terminal velocities were identified to be affected by the impacting velocities, but their correlation is not continuous and may not be positive. Finally, we propose to quantify the rotational or translational movement by effective kinematic ratio (EKR), which is defined as the translational kinematic energy divided by the total kinematic energy. The unique relation between the EKR and the terminal velocity is suggested to be one practical indicator to intrinsically characterize the water repellency at the particle level.

Suggested Citation

  • Qing Bao & Hengyi Kang, 2021. "Numerical Simulation of Droplet Impacting and Sliding on Hydrophobic Granular Surfaces," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-13, April.
  • Handle: RePEc:hin:jnlmpe:5534003
    DOI: 10.1155/2021/5534003
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/5534003.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/5534003.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5534003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5534003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.