Author
Abstract
This paper develops a version of Robust Stochastic Maximum Principle (RSMP) applied to the Minimax Mayer Problem formulated for stochastic differential equations with the control-dependent diffusion term. The parametric families of first and second order adjoint stochastic processes are introduced to construct the corresponding Hamiltonian formalism. The Hamiltonian function used for the construction of the robust optimal control is shown to be equal to the Lebesque integral over a parametric set of the standard stochastic Hamiltonians corresponding to a fixed value of the uncertain parameter. The paper deals with a cost function given at finite horizon and containing the mathematical expectation of a terminal term. A terminal condition, covered by a vector function, is also considered. The optimal control strategies, adapted for available information, for the wide class of uncertain systems given by an stochastic differential equation with unknown parameters from a given compact set, are constructed. This problem belongs to the class of minimax stochastic optimization problems. The proof is based on the recent results obtained for Minimax Mayer Problem with a finite uncertainty set [14,43-45] as well as on the variation results of [53] derived for Stochastic Maximum Principle for nonlinear stochastic systems under complete information. The corresponding discussion of the obtain results concludes this study.
Suggested Citation
Alex S. Poznyak, 2002.
"Robust stochastic maximum principle: Complete proof and discussions,"
Mathematical Problems in Engineering, Hindawi, vol. 8, pages 1-23, January.
Handle:
RePEc:hin:jnlmpe:434637
DOI: 10.1080/10241230306722
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:434637. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.