Author
Listed:
- Fredric M. Ham
- Ivica Kostanic
Abstract
In this paper we present partial least-squares (PLS), which is a statistical modeling method used extensively in analytical chemistry for quantitatively analyzing spectroscopic data. Comparisons are made between classical least-squares (CLS) and PLS to show how PLS can be used in certain engineering signal processing applications. Moreover, it is shown that in certain situations when there exists a linear relationship between the independent and dependent variables, PLS can yield better predictive performance than CLS when it is not desirable to use all of the empirical data to develop a calibration model used for prediction. Specifically, because PLS is a factor analysis method, optimal selection of the number of PLS factors can result in a calibration model whose predictive performance is considerably better than CLS. That is, factor analysis ( rank reduction ) allows only those features of the data that are associated with information of interest to be retained for development of the calibration model, and the remaining data associated with noise are discarded. It is shown that PLS can yield physical insight into the system from which empirical data has been collected. Also, when there exists a non-linear cause-and-effect relationship between the independent and dependent variables, the PLS calibration model can yield prediction errors that are much less than those for CLS. Three PLS application examples are given and the results are compared to CLS. In one example, a method is presented using PLS for parametric system identification. Using PLS for system identification allows simultaneous estimation of the system dimension and the system parameter vector associated with a minimal realization of the system.
Suggested Citation
Fredric M. Ham & Ivica Kostanic, 1996.
"Partial least-squares: Theoretical issues and engineering applications in signal processing,"
Mathematical Problems in Engineering, Hindawi, vol. 2, pages 1-31, January.
Handle:
RePEc:hin:jnlmpe:343626
DOI: 10.1155/S1024123X96000245
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:343626. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.