IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/1172050.html
   My bibliography  Save this article

Potential of a Nonperennial Tributary Integrated with Solar Energy for Rural Electrification: A Case Study of Ikukwa Village in Tanzania

Author

Listed:
  • Isaka J Mwakitalima
  • Mohammad Rizwan
  • Narendra Kumar
  • Alessandro Mauro

Abstract

This study evaluates the hydropower potential in the design of a micro-hydro/solar photovoltaic hybrid system with battery energy storage for increasing the access to electricity in Ikukwa Village in Mbeya Region of Tanzania. Usually, hybridized hydropower schemes are designed from perennial streams for the provision of electricity. This study incorporates the run-of-the river (COE) power scheme, which originates from the untapped potential of nonperennial hydro-energy source and the use of traditional approach of data measurements for Ikata tributary to design hybrid system. The system is optimized by the minimization of the total net present cost (NPC) and cost of energy (COE) using the soft computing method of Hybrid Optimization of Multiple Energy Resources (HOMER) software and artificial intelligent (AI) techniques. AI optimization techniques such as particle swarm optimization (PSO), grey wolf optimization (GWO), and GWO-PSO hybrid (GWO-PSOHD) algorithms have been employed for further optimal results. The data for solar radiation and the tributary have been obtained from the National Aeronautics and Space Administration (NASA) and traditional methods of measurements, respectively. The estimated maximum water flow rate and head are 2.943 m3/s and 13 m, respectively. In the same period, the approximated theoretical power potential of the tributary is found to be 375 kW. Total NPCs obtained from HOMER, PSO, GWO, and GWO-PSOHD methods are $ 141, 397.76, $ 95 167.21, $ 92 472.82, and $ 91,854.10, respectively. Similarly, the optimal results of COE from HOMER, PSO, GWO, and GWO-PSOHD approaches are $ 0.1818/kWh, $ 0.1185/kWh, $ 0.1182/kWh, and $ 0.1181/kWh, respectively. Comparatively, PSO implementation has indicated the greatest energy cost, while the cost acquired by GWO-PSOHD is the lowest for all aforementioned AI optimization techniques. The tributary under study has a high potential of diversification of energy sources for rural electrification in the area of study and other parts of the world with comparable conditions.

Suggested Citation

  • Isaka J Mwakitalima & Mohammad Rizwan & Narendra Kumar & Alessandro Mauro, 2022. "Potential of a Nonperennial Tributary Integrated with Solar Energy for Rural Electrification: A Case Study of Ikukwa Village in Tanzania," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-37, May.
  • Handle: RePEc:hin:jnlmpe:1172050
    DOI: 10.1155/2022/1172050
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/mpe/2022/1172050.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/mpe/2022/1172050.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/1172050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:1172050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.