IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/105143.html
   My bibliography  Save this article

The Design of QFT Robust Compensators with Magnitude and Phase Specifications

Author

Listed:
  • José Carlos Moreno
  • Alfonso Baños
  • Manuel Berenguel

Abstract

The frequency response is an important tool for practical and efficient design of control systems. Control techniques based on frequency response are of special interest to dealing with important subjects such as the bandwidth and the cost of feedback. Furthermore, these techniques are easily adapted to deal with the uncertainty of the process to control. Quantitative feedback theory (QFT) is an engineering design technique of uncertain feedback systems that uses frequency domain specifications. This paper analyzes the phase specifications problem in frequency domain using QFT. This type of specification is not commonly taken into account due to the fundamental limitations of the linear control given by Bode's integral. An algorithm is proposed aimed at achieving prespecified closed-loop transfer function phase and magnitude variations, taking into account the plant uncertainty. A two-degrees-of-freedom feedback control structure is used and a new type of boundary is defined to satisfy these objectives. As the control effort heavily depends on a good estimation of these boundaries, the proposed algorithm allows avoiding overdesign.

Suggested Citation

  • José Carlos Moreno & Alfonso Baños & Manuel Berenguel, 2010. "The Design of QFT Robust Compensators with Magnitude and Phase Specifications," Mathematical Problems in Engineering, Hindawi, vol. 2010, pages 1-20, January.
  • Handle: RePEc:hin:jnlmpe:105143
    DOI: 10.1155/2010/105143
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2010/105143.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2010/105143.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2010/105143?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:105143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.