Author
Abstract
We consider several heat conduction problems for glass lenses with different boundary conditions. The problems dealt with in Sections sec:1 to sec:3 are motivated by the problem of an airborne digital camera that is initially too cold and must be heated up to reach the required image quality. The problem is how to distribute the heat to the different lenses in the system in order to reach acceptable operating conditions as quickly as possible. The problem of Section sec:4 concerns a space borne laser altimeter for planetary exploration. Will a coating used to absorb unwanted parts of the solar spectrum lead to unacceptable heating? In this paper, we present analytic solutions for idealized cases that help in understanding the essence of the problems qualitatively and quantitatively, without having to resort to finite element computations. The use of dimensionless quantities greatly simplifies the picture by reducing the number of relevant parameters. The methods used are classical: elementary real analysis and special functions. However, the boundary conditions dictated by our applications are not usually considered in classical works on the heat equation, so that the analytic solutions given here seem to be new. We will also show how energy conservation leads to interesting sum formulae in connection with Bessel functions. The other side of the story, to determine the deterioration of image quality by given (inhomogeneous) temperature distributions in the optical system, is not dealt with here.
Suggested Citation
Beat Aebischer, 2007.
"Heat Conduction in Lenses,"
Mathematical Problems in Engineering, Hindawi, vol. 2007, pages 1-28, April.
Handle:
RePEc:hin:jnlmpe:057360
DOI: 10.1155/2007/57360
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:057360. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.