IDEAS home Printed from https://ideas.repec.org/a/hin/jnljam/9452762.html
   My bibliography  Save this article

Improved Combinatorial Benders Decomposition for a Scheduling Problem with Unrelated Parallel Machines

Author

Listed:
  • Francisco Regis Abreu Gomes
  • Geraldo Robson Mateus

Abstract

This paper addresses the unrelated parallel machines scheduling problem with sequence and machine dependent setup times. Its goal is to minimize the makespan. The problem is solved by a combinatorial Benders decomposition. This method can be slow to converge. Therefore, three procedures are introduced to accelerate its convergence. The first procedure is a new method that consists of terminating the execution of the master problem when a repeated optimal solution is found. The second procedure is based on the multicut technique. The third procedure is based on the warm-start. The improved Benders decomposition scheme is compared to a mathematical formulation and a standard implementation of Benders decomposition algorithm. In the experiments, two test sets from the literature are used, with 240 and 600 instances with up to 60 jobs and 5 machines. For the first set the proposed method performs 21.85% on average faster than the standard implementation of the Benders algorithm. For the second set the proposed method failed to find an optimal solution in only 31 in 600 instances, obtained an average gap of 0.07%, and took an average computational time of 377.86 s, while the best results of the other methods were 57, 0.17%, and 573.89 s, respectively.

Suggested Citation

  • Francisco Regis Abreu Gomes & Geraldo Robson Mateus, 2017. "Improved Combinatorial Benders Decomposition for a Scheduling Problem with Unrelated Parallel Machines," Journal of Applied Mathematics, Hindawi, vol. 2017, pages 1-10, July.
  • Handle: RePEc:hin:jnljam:9452762
    DOI: 10.1155/2017/9452762
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/JAM/2017/9452762.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/JAM/2017/9452762.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/9452762?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonathan De La Vega & Alfredo Moreno & Reinaldo Morabito & Pedro Munari, 2023. "A robust optimization approach for the unrelated parallel machine scheduling problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 31-66, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnljam:9452762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.