IDEAS home Printed from https://ideas.repec.org/a/hin/jnlamp/9876464.html
   My bibliography  Save this article

Color Confinement and Spatial Dimensions in the Complex-Sedenion Space

Author

Listed:
  • Zi-Hua Weng

Abstract

The paper aims to apply the complex-sedenions to explore the wave functions and field equations of non-Abelian gauge fields, considering the spatial dimensions of a unit vector as the color degrees of freedom in the complex-quaternion wave functions, exploring the physical properties of the color confinement essentially. J. C. Maxwell was the first to employ the quaternions to study the electromagnetic fields. His method inspires subsequent scholars to introduce the quaternions, octonions, and sedenions to research the electromagnetic field, gravitational field, and nuclear field. The application of complex-sedenions is capable of depicting not only the field equations of classical mechanics, but also the field equations of quantum mechanics. The latter can be degenerated into the Dirac equation and Yang-Mills equation. In contrast to the complex-number wave function, the complex-quaternion wave function possesses three new degrees of freedom, that is, three color degrees of freedom. One complex-quaternion wave function is equivalent to three complex-number wave functions. It means that the three spatial dimensions of unit vector in the complex-quaternion wave function can be considered as the “three colors”; naturally the color confinement will be effective. In other words, in the complex-quaternion space, the “three colors” are only the spatial dimensions, rather than any property of physical substance.

Suggested Citation

  • Zi-Hua Weng, 2017. "Color Confinement and Spatial Dimensions in the Complex-Sedenion Space," Advances in Mathematical Physics, Hindawi, vol. 2017, pages 1-26, April.
  • Handle: RePEc:hin:jnlamp:9876464
    DOI: 10.1155/2017/9876464
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AMP/2017/9876464.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AMP/2017/9876464.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/9876464?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlamp:9876464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.