IDEAS home Printed from https://ideas.repec.org/a/hin/jnlamp/8298691.html
   My bibliography  Save this article

Extended Minimal Atomicity through Nondifferentiability: A Mathematical-Physical Approach

Author

Listed:
  • Gabriel Gavriluţ
  • Alina Gavriluţ
  • Maricel Agop

Abstract

The mathematical concept of minimal atomicity is extended to fractal minimal atomicity, based on the nondifferentiability of the motion curves of physical system entities on a fractal manifold. For this purpose, firstly, different results concerning minimal atomicity from the mathematical procedure of the Quantum Measure Theory and also several physical implications are obtained. Further, an inverse method with respect to the common developments concerning the minimal atomicity concept has been used, showing that Quantum Mechanics is identified as a particular case of Fractal Mechanics at a given scale resolution. More precisely, for fractality through Markov type stochastic processes, i.e., fractalization through stochasticization, the standard Schrödinger equation is identified with the geodesics of a fractal space for motions of the physical system entities on nondifferentiable curves on fractal dimension two at Compton scale resolution. In the one-dimensional stationary case of the fractal Schrödinger type geodesics, a special symmetry induced by the homographic group in Barbilian’s form “makes possible the synchronicity” of all entities of a given physical system. The integral and differential properties of this group under the restriction of defining a parallelism of directions in Levi-Civita’s sense impose correspondences with the “dynamics” of the hyperbolic plane so that harmonic mappings between the ordinary flat space and the hyperbolic one generate (by means of a variational principle) a priori probabilities in Jaynes’ sense. The explicitation of such situation specifies the fact that the hydrodynamical variant of a Fractal Mechanics is more easily approached and, from this, the fact that Quantum Measure Theory can be a particular case of a possible Fractal Measure Theory.

Suggested Citation

  • Gabriel Gavriluţ & Alina Gavriluţ & Maricel Agop, 2019. "Extended Minimal Atomicity through Nondifferentiability: A Mathematical-Physical Approach," Advances in Mathematical Physics, Hindawi, vol. 2019, pages 1-16, January.
  • Handle: RePEc:hin:jnlamp:8298691
    DOI: 10.1155/2019/8298691
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AMP/2019/8298691.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AMP/2019/8298691.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/8298691?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlamp:8298691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.