IDEAS home Printed from https://ideas.repec.org/a/hin/jnlamp/6265427.html
   My bibliography  Save this article

Quasi-Particles, Thermodynamic Consistency, and the Gap Equation

Author

Listed:
  • Enore Guadagnini

Abstract

The thermodynamic potentials of superconducting electrons are derived by means of the Bogoliubov-Valatin formalism. The thermodynamic potentials can be obtained by computing the free energy of a gas of quasi-particles, whose energy spectrum is conditional on the gap function. However, the nontrivial dependence of the gap on the temperature jeopardises the validity of the standard thermodynamic relations. In this article, it is shown how the thermodynamic consistency (i.e., the validity of the Maxwell relations) is recovered, and the correction terms to the quasi-particles potentials are computed. It is shown that the Bogoliubov-Valatin transformation avoids the problem of the thermodynamic consistency of the quasi-particle approach; in fact, the correct identification of the variables, which are associated with the quasi-particles, leads to a precise calculation of the quasi-particles vacuum energy and of the dependence of the chemical potential on the electron density. The stationarity condition for the grand potential coincides with the gap equation, which guarantees the thermodynamic consistency. The expressions of various thermodynamic potentials, as functions of the variables, are produced in the low temperature limit; as a final check, a rederivation of the condensation energy is presented.

Suggested Citation

  • Enore Guadagnini, 2017. "Quasi-Particles, Thermodynamic Consistency, and the Gap Equation," Advances in Mathematical Physics, Hindawi, vol. 2017, pages 1-9, July.
  • Handle: RePEc:hin:jnlamp:6265427
    DOI: 10.1155/2017/6265427
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AMP/2017/6265427.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AMP/2017/6265427.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/6265427?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlamp:6265427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.