IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/176253.html
   My bibliography  Save this article

A Novel Kernel for RBF Based Neural Networks

Author

Listed:
  • Wasim Aftab
  • Muhammad Moinuddin
  • Muhammad Shafique Shaikh

Abstract

Radial basis function (RBF) is well known to provide excellent performance in function approximation and pattern classification. The conventional RBF uses basis functions which rely on distance measures such as Gaussian kernel of Euclidean distance (ED) between feature vector and neuron’s center, and so forth. In this work, we introduce a novel RBF artificial neural network (ANN) where the basis function utilizes a linear combination of ED based Gaussian kernel and a cosine kernel where the cosine kernel computes the angle between feature and center vectors. Novelty of the proposed work relies on the fact that we have shown that there may be scenarios where the two feature vectors (FV) are more prominently distinguishable via the proposed cosine measure as compared to the conventional ED measure. We discuss adaptive symbol detection for multiple phase shift keying (MPSK) signals as a practical example to show where the angle information can be pivotal which in turn justifies our proposed RBF kernel. To corroborate our theoretical developments, we investigate the performance of the proposed RBF for the problems pertaining to three different domains. Our results show that the proposed RBF outperforms the conventional RBF by a remarkable margin.

Suggested Citation

  • Wasim Aftab & Muhammad Moinuddin & Muhammad Shafique Shaikh, 2014. "A Novel Kernel for RBF Based Neural Networks," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-10, June.
  • Handle: RePEc:hin:jnlaaa:176253
    DOI: 10.1155/2014/176253
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2014/176253.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2014/176253.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/176253?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Varaha Satya Bharath Kurukuru & Frede Blaabjerg & Mohammed Ali Khan & Ahteshamul Haque, 2020. "A Novel Fault Classification Approach for Photovoltaic Systems," Energies, MDPI, vol. 13(2), pages 1-17, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:176253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.