IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/8998352.html
   My bibliography  Save this article

A Random Traffic Assignment Model for Networks Based on Discrete Dynamic Bayesian Algorithms

Author

Listed:
  • Wei Zhou
  • Gengxin Sun

Abstract

In this paper, a stochastic traffic assignment model for networks is proposed for the study of discrete dynamic Bayesian algorithms. In this paper, we study a feasible method and theoretical system for implementing traffic engineering in networks based on Bayesian algorithm theory. We study the implementation of traffic assignment engineering in conjunction with the network stochastic model: first, we study the Bayesian algorithm theoretical model of control layer stripping in the network based on the discrete dynamic Bayesian algorithm theory and analyze the resource-sharing mechanism in different queuing rules; second, we study the extraction and evaluation theory of traffic assignment for the global view obtained by the control layer of the network and establish the Bayesian algorithm analysis model based on the traffic assignment; subsequently, the routing of bandwidth guarantee and delay guarantee in the network is studied based on Bayesian algorithm model and Bayesian algorithm network random traffic allocation theory. In this paper, a Bayesian algorithm estimation model based on Bayesian algorithm theory is constructed based on network random observed traffic assignment as input data. The model assumes that the roadway traffic distribution follows the network random principle, and based on this assumption, the likelihood function of the roadway online traffic under the network random condition is derived; the prior distribution of the roadway traffic is derived based on the maximum entropy principle; the posterior distribution of the roadway traffic is solved by combining the likelihood function and the prior distribution. The corresponding algorithm is designed for the model with roadway traffic as input, and the reliability of the algorithm is verified in the arithmetic example.

Suggested Citation

  • Wei Zhou & Gengxin Sun, 2022. "A Random Traffic Assignment Model for Networks Based on Discrete Dynamic Bayesian Algorithms," Discrete Dynamics in Nature and Society, Hindawi, vol. 2022, pages 1-12, January.
  • Handle: RePEc:hin:jnddns:8998352
    DOI: 10.1155/2022/8998352
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/ddns/2022/8998352.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/ddns/2022/8998352.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/8998352?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:8998352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.