IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/6848745.html
   My bibliography  Save this article

Prediction of Drifter Trajectory Using Evolutionary Computation

Author

Listed:
  • Yong-Wook Nam
  • Yong-Hyuk Kim

Abstract

We used evolutionary computation to predict the trajectory of surface drifters. The data used to create the predictive model comprise the hourly position of the drifters, the flow and wind velocity at the location, and the location predicted by the MOHID model. In contrast to existing numerical models that use the Lagrangian method, we used an optimization algorithm to predict the trajectory. As the evaluation measure, a method that gives a better score as the Mean Absolute Error (MAE) when the difference between the predicted position in time and the actual position is lower and the Normalized Cumulative Lagrangian Separation (NCLS), which is widely used as a trajectory evaluation method of drifters, were used. The evolutionary methods Differential Evolution (DE), Particle Swarm Optimization (PSO), Covariance Matrix Adaptation Evolution Strategy (CMA-ES), and ensembles of the above were used, with the DE&PSO ensemble found to be the best prediction model. Considering our objective to find a parameter that minimizes the fitness function to identify the average of the difference between the predictive change and the actual change, this model yielded better results than the existing numerical model in three of the four cases used for the test data, at an average of 19.36% for MAE and 5.96% for NCLS. Thus, the model using the fitness function set in this study showed improved results in NCLS and thus shows that NCLS can be used sufficiently in the evaluation system.

Suggested Citation

  • Yong-Wook Nam & Yong-Hyuk Kim, 2018. "Prediction of Drifter Trajectory Using Evolutionary Computation," Discrete Dynamics in Nature and Society, Hindawi, vol. 2018, pages 1-15, January.
  • Handle: RePEc:hin:jnddns:6848745
    DOI: 10.1155/2018/6848745
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/DDNS/2018/6848745.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/DDNS/2018/6848745.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/6848745?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:6848745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.