IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/6693759.html
   My bibliography  Save this article

Complex System Analysis of Blumeria graminis f.sp. tritici Isolates Collected in Central Hebei Province, China

Author

Listed:
  • Qingping Zhou
  • Lingli Li
  • Long Wang
  • Junhai Ma

Abstract

Wheat powdery mildew (WPM), caused by Blumeria graminis f.sp. tritici, is a significant disease of wheat throughout the world and has resulted in substantial yield and economic losses in wheat production. It is particularly important to understand the population distribution and genetic resistance of B. graminis f.sp. tritici. In 2019, the cumulative incidence of wheat powdery mildew in China was nearly 8.7 million hm2, which seriously affected the safe production of wheat in China. However, the proportion of disease-resistant wheat varieties in actual production was relatively low, and effective disease-resistant genes were lacking. As one of the main wheat-producing provinces in China, it is of great significance for normal wheat production to understand powdery mildew resistance in Hebei province. In this study, using wheat seedling culture in vitro, the physiological races of wheat powdery mildew in central Hebei province were identified, and the population toxicity frequency was analyzed. The results were as follows: (1) 36 strains were purified and 20 physiological races were identified. Among them, the dominant race is 015, and the distribution frequency is 16.7%. Race 077 is the second dominant race. (2) The frequency of virulence genes VEra, V8, V1, V3c, and V3f in population toxicity frequency analysis was more than 70%, while the frequency of virulence genes V2, MID, V20, V21, V4b, and V4 was less than 16.7%, and 46% of virulence genes of powdery mildew were higher than 40%. It shows that the virulence gene frequency of powdery mildew in Hebei province is high, and the varieties containing Pm2 + MID, Pm20, Pm21, Pm1b, Pm1, and other disease resistance genes have a certain value inbreeding.

Suggested Citation

  • Qingping Zhou & Lingli Li & Long Wang & Junhai Ma, 2021. "Complex System Analysis of Blumeria graminis f.sp. tritici Isolates Collected in Central Hebei Province, China," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-8, April.
  • Handle: RePEc:hin:jnddns:6693759
    DOI: 10.1155/2021/6693759
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/ddns/2021/6693759.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/ddns/2021/6693759.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/6693759?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:6693759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.