IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/5803407.html
   My bibliography  Save this article

Improving Deep Learning for Forecasting Accuracy in Financial Data

Author

Listed:
  • Shih-Lin Lin
  • Hua-Wei Huang

Abstract

Financial forecasting is based on the use of past and present financial information to make the best prediction of the future financial situation, to avoid high-risk situations, and to increase benefits. Such forecasts are of interest to anyone who wants to know the state of possible finances in the future, including investors and decision-makers. However, the complex nature of financial data makes it difficult to get accurate forecasts. Artificial intelligence, which has been shown to be suitable for analyzing very complex problems, can be applied to financial forecasting. Financial data is both nonlinear and nonstationary, with broadband frequency features. In other words, there is a large range of fluctuation, meaning that predictions made only using long short-term memory (LSTM) are not enough to ensure accuracy. This study uses an LSTM model for analysis of financial data, followed by a comparison of the analytical results with the actual data to see which has a larger root-mean-square-error (RMSE). The proposed method combines deep learning with empirical mode decomposition (EMD) to understand and predict financial trends from financial data. The financial data for this study are from the Taiwan corporate social responsibility (CSR) index. First, the EMD method is used to transform the CSR index data into a limited number of intrinsic mode functions (IMF). The bandwidth of these IMFs becomes narrower, with regular cyclic, periodic, or seasonal components in the time domain. In other words, the range of fluctuation is small. LSTM is a good way to forecast cyclic or seasonal data. The forecast result is obtained by adding all the IMFs together. It has been verified in past studies that only the LSTM and LSTM combined with the EMD can be used. The analytical results show that smaller RMSEs can be obtained using the LSTM combined with EMD compared to real data.

Suggested Citation

  • Shih-Lin Lin & Hua-Wei Huang, 2020. "Improving Deep Learning for Forecasting Accuracy in Financial Data," Discrete Dynamics in Nature and Society, Hindawi, vol. 2020, pages 1-12, March.
  • Handle: RePEc:hin:jnddns:5803407
    DOI: 10.1155/2020/5803407
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/DDNS/2020/5803407.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/DDNS/2020/5803407.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/5803407?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:5803407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.