IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/2036349.html
   My bibliography  Save this article

Design of Computational Model for Cyanobacterial Pollutant Diffusion Change in Chaohu Lake of China Based on Large Data

Author

Listed:
  • Junping Yao
  • Guilan He

Abstract

Cyanobacteria in Chaohu Lake multiply rapidly and diffuse in large quantities every summer, which has a serious impact on the normal life of the surrounding residents and the local economic development. Therefore, it is urgent to control the cyanobacterial pollutants in Chaohu Lake. In this context, in order to improve the scientificalness and feasibility of control measures, it is an important prerequisite and condition to grasp the change of cyanobacterial pollutant diffusion in Chaohu Lake. For this reason, a computational model for cyanobacterial pollutant diffusion in Chaohu Lake, China, was designed based on the relevant large data. The design of the model is divided into three parts: the first part builds an area calculation model to analyze the change of cyanobacterial pollutant diffusion area; the second part builds a concentration calculation model to analyze the change of cyanobacterial pollutant concentration; and the third part combines the previous two to build a diffusion change calculation model to analyze the rule of cyanobacterial pollutant diffusion change in Chaohu Lake. In order to verify the feasibility and validity of the model, simulation experiments were carried out. The results show that, under the large data related to cyanobacteria pollution in Chaohu Lake, China, from May to August 2017, the calculation model is used to calculate the cyanobacteria pollutant diffusion change. The data obtained are basically consistent with the actual situation, which proves the feasibility and validity of the model. This provides data support for the cyanobacteria pollution control in Chaohu Lake and improves the efficiency and effect of the control.

Suggested Citation

  • Junping Yao & Guilan He, 2020. "Design of Computational Model for Cyanobacterial Pollutant Diffusion Change in Chaohu Lake of China Based on Large Data," Discrete Dynamics in Nature and Society, Hindawi, vol. 2020, pages 1-7, July.
  • Handle: RePEc:hin:jnddns:2036349
    DOI: 10.1155/2020/2036349
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/DDNS/2020/2036349.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/DDNS/2020/2036349.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/2036349?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:2036349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.