IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/135248.html
   My bibliography  Save this article

Observer-Based Bounded Control for Discrete Time-Delay Uncertain Nonlinear Systems

Author

Listed:
  • Bei Wu
  • Mou Chen
  • Xiaoming Chen

Abstract

A bounded controller is proposed for a class of uncertain discrete time-delay systems with nonlinearity and disturbance based on state estimator and disturbance observer technique. A state estimator is developed to estimate the unmeasured system state vector. Suppose that the disturbance is generated by an exogenous system; a disturbance observer is designed to estimate the unknown disturbance. The parameters of the state estimator and the disturbance observer are calculated by solving linear matrix inequalities (LMIs). By applying the outputs of the state estimator and the disturbance observer, the sufficient condition for the existence of the bounded controller is derived based on an appropriate Lyapunov function candidate. Under the developed bounded controller, the stability of the closed-loop system can be guaranteed. Simulation examples are provided to show the effectiveness of the proposed bounded control scheme.

Suggested Citation

  • Bei Wu & Mou Chen & Xiaoming Chen, 2015. "Observer-Based Bounded Control for Discrete Time-Delay Uncertain Nonlinear Systems," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-16, November.
  • Handle: RePEc:hin:jnddns:135248
    DOI: 10.1155/2015/135248
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/DDNS/2015/135248.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/DDNS/2015/135248.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/135248?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. T. Senthilkumar & P. Balasubramaniam, 2011. "Delay-dependent robust control for uncertain stochastic T–S fuzzy systems with time-varying state and input delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 42(5), pages 877-887.
    2. Qingyun Yang & Mou Chen, 2014. "Robust Control for Uncertain Linear System Subject to Input Saturation," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-12, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Shi & Yanyan Yin & Fei Liu, 2013. "Gain-Scheduled Worst-Case Control on Nonlinear Stochastic Systems Subject to Actuator Saturation and Unknown Information," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 844-858, March.
    2. Yuechao Ma & Shujie Jin & Nannan Gu, 2015. "Delay-dependent decentralised control for a class of uncertain similar interconnected systems with state delay and input delay," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(16), pages 2887-2896, December.
    3. Shiping Wen & Zhigang Zeng & Tingwen Huang, 2015. "Observer-based fuzzy control for discrete-time Takagi–Sugeno fuzzy mixed delay systems with random packet losses and multiplicative noises," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(1), pages 159-169, January.
    4. Gao, Ming & Sheng, Li & Zhang, Weihai, 2015. "Stochastic H2/H∞ control of nonlinear systems with time-delay and state-dependent noise," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 429-440.
    5. Yeong-Chan Chang, 2014. "Robust adaptive neural tracking control for a class of electrically driven robots with time delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(11), pages 2418-2434, November.
    6. R. Rakkiyappan & A. Chandrasekar & S. Lakshmanan, 2016. "Stochastic sampled data robust stabilisation of T-S fuzzy neutral systems with randomly occurring uncertainties and time-varying delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(10), pages 2247-2263, July.
    7. Yuechao Ma & Shujie Jin & Nannan Gu, 2016. "Decentralised memory static output feedback control for the nonlinear time-delay similar interconnected systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(10), pages 2487-2498, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:135248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.