IDEAS home Printed from https://ideas.repec.org/a/hin/jjmath/2568891.html

Stability, Bifurcation, and Chaos Control in a Discrete-Time Predator–Prey Model With Gompertz Growth and Ivlev Functional Response Under Proportional Harvesting

Author

Listed:
  • Saad Jamhan Aldosari
  • Rizwan Ahmed
  • Waseem Abbas Shah
  • Asma Khalid
  • Fulgensia Kamugisha Mbabazi

Abstract

This paper investigates the complex dynamics of a discrete-time predator–prey system incorporating proportionate prey harvesting. The model is derived from a continuous system using the forward Euler discretization method and extends a previously studied model by introducing a harvesting term. First, the positivity of solutions is established to ensure biological feasibility of the discretized system. We analyze the existence and local stability of biologically feasible fixed points, with particular focus on the interior fixed point. Through rigorous bifurcation analysis, we identify both Neimark–Sacker and period-doubling bifurcations, revealing transitions from stable equilibria to periodic and chaotic behavior. To manage these complex dynamics, we apply feedback control and hybrid control strategies, both of which are shown to effectively suppress bifurcation-induced chaos and stabilize the system. Numerical simulations are provided to validate the theoretical results and illustrate rich dynamical behavior, including quasi-periodic oscillations and strange attractors. Moreover, Codimension 2 bifurcations are identified, including 1:2, 1:3, and 1:4 resonance bifurcations that provide a clear explanation of the transition routes to complex dynamics in the model. The findings emphasize that a moderate level of harvesting can promote coexistence and stability of both prey and predator populations, whereas excessive harvesting may destabilize or collapse the system.

Suggested Citation

  • Saad Jamhan Aldosari & Rizwan Ahmed & Waseem Abbas Shah & Asma Khalid & Fulgensia Kamugisha Mbabazi, 2026. "Stability, Bifurcation, and Chaos Control in a Discrete-Time Predator–Prey Model With Gompertz Growth and Ivlev Functional Response Under Proportional Harvesting," Journal of Mathematics, Hindawi, vol. 2026, pages 1-34, January.
  • Handle: RePEc:hin:jjmath:2568891
    DOI: 10.1155/jom/2568891
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/jmath/2026/2568891.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/jmath/2026/2568891.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/jom/2568891?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:2568891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.