IDEAS home Printed from https://ideas.repec.org/a/hin/complx/8823662.html
   My bibliography  Save this article

Evolutionary External Archive for Gaining-Sharing Knowledge–Based Algorithm

Author

Listed:
  • Hao Li
  • Zhaoning Tian
  • Zhenhua Li

Abstract

Real-parameter single-objective optimization has become a prominent focus within artificial intelligence in recent years. Among population-based metaheuristics, differential evolution (DE) and covariance matrix adaptation evolution strategy (CMA-ES) have consistently demonstrated strong performance. However, the difficulty of solving optimization problems increases exponentially with the dimensionality of the objective function, resulting in a corresponding rise in the number of required function evaluations. To address this challenge, a novel algorithm—the Gaining-Sharing Knowledge (GSK)–based algorithm—has emerged as a promising solution. GSK’s development trajectory currently resembles the early stages of DE. Nevertheless, further enhancements are necessary to unlock its full potential. In this paper, we propose an evolutionary external archive (EEA) for GSK and its variants, inspired by the external archive mechanism used in DE. The proposed EEA integrates individuals from both the current population and the archive into the evolutionary process. To promote diversity, we apply an evolutionary procedure based on CMA-ES within the archive and exclude individuals from the archive if identical counterparts exist in the current generation. We evaluate our approach using three benchmark test suites from the Congress on Evolutionary Computation (CEC) and real-world optimization problems from CEC 2011. Our experimental analysis compares GSK and its variants with and without the EEA. Results show that the EEA significantly improves the performance of GSK and its variants. Consequently, the GSK variant, AGSK, with the EEA is selected for further comparison against benchmark algorithms. Experimental results confirm that our proposed method is highly competitive.

Suggested Citation

  • Hao Li & Zhaoning Tian & Zhenhua Li, 2025. "Evolutionary External Archive for Gaining-Sharing Knowledge–Based Algorithm," Complexity, Hindawi, vol. 2025, pages 1-17, August.
  • Handle: RePEc:hin:complx:8823662
    DOI: 10.1155/cplx/8823662
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2025/8823662.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2025/8823662.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/cplx/8823662?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8823662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.