IDEAS home Printed from https://ideas.repec.org/a/hin/complx/8257168.html
   My bibliography  Save this article

Reinforcement Learning-Based Routing Protocol to Minimize Channel Switching and Interference for Cognitive Radio Networks

Author

Listed:
  • Tauqeer Safdar Malik
  • Mohd Hilmi Hasan

Abstract

In the existing network-layered architectural stack of Cognitive Radio Ad Hoc Network (CRAHN), channel selection is performed at the Medium Access Control (MAC) layer. However, routing is done on the network layer. Due to this limitation, the Secondary/Unlicensed Users (SUs) need to access the channel information from the MAC layer whenever the channel switching event occurred during the data transmission. This issue delayed the channel selection process during the immediate routing decision for the channel switching event to continue the transmission. In this paper, a protocol is proposed to implement the channel selection decisions at the network layer during the routing process. The decision is based on past and expected future routing decisions of Primary Users (PUs). A learning agent operating in the cross-layer mode of the network-layered architectural stack is implemented in the spectrum mobility manager to pass the channel information to the network layer. This information is originated at the MAC layer. The channel selection is performed on the basis of reinforcement learning algorithms such as No-External Regret Learning, Q -Learning, and Learning Automata. This leads to minimizing the channel switching events and user interferences in the Reinforcement Learning- (RL-) based routing protocol. Simulations are conducted using Cognitive Radio Cognitive Network simulator based on Network Simulator (NS-2). The simulation results showed that the proposed routing protocol performed better than all the other comparative routing protocols in terms of number of channel switching events, average data rate, packet collision, packet loss, and end-to-end delay. The proposed routing protocol implies the improved Quality of Service (QoS) of the delay sensitive and real-time networks such as Cellular and Tele Vision (TV) networks.

Suggested Citation

  • Tauqeer Safdar Malik & Mohd Hilmi Hasan, 2020. "Reinforcement Learning-Based Routing Protocol to Minimize Channel Switching and Interference for Cognitive Radio Networks," Complexity, Hindawi, vol. 2020, pages 1-24, August.
  • Handle: RePEc:hin:complx:8257168
    DOI: 10.1155/2020/8257168
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/8257168.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/8257168.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/8257168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8257168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.